Novel ecosystems?

Hobbs et al (2006): ecosystems with new species assemblages

Wikipedia: no natural analog, hallmark of Anthropocene

Brave New World of Ecology

Wetland function & composition in novel environments

Dr. Beth Middleton

USGS National Wetlands Research Center, Lafayette, LA

surveyor's marker 1800s

CO₂ Then:278 Now:378 Future:756 ppm

environmental constraints \rightarrow novel ecosystem

- -changes in temp extremes, CO_2 , water
- -migration
- -local genetic flexibility (seed bank)
- -competition
- -land use change
- -interactions of environments

sea level rise – salinity & water level: very likely IPCC 2012

Climate warming to 2100 (virtually certain) -increase in extreme warm days/night -decrease in cold days/nights

IPCC 2012

Extreme flood = likely > precip = very likely spring

Extreme drought = medium confidence c North America, s Africa s&c Europe, c America, Mediterranean,

-major wetland impact

IPCC 2012

Extreme drought/flooding -novel ecosystem production & regeneration

canopy damage images

extreme storm/hurricane -low confidence -little model agreement

*regeneration & composition

Much hand waving

- -info needed: species responses to climate change
- -individualistic tolerance for novel environments
- -Gleasonian perspectives!

NABSCN: ecosystem response environment gradient

Production across NABSCN latitude gradients

Tree & knee growth

Leaf litter

Root production

Cone production

Current Day: production highest in center of range

Future novel environments? -peak production farther north than Arkansas -constricted southern distribution

Ground cover & environment:

future swamps: frost, salinity, latitude (temp), drawdown

Climate change environments.... CO_2 , temperature, water regime, salinity

seed banks

seedlings

Future marsh & swamp: few species respond to CO₂

freshwater marsh: *Cyperus haspan* *responds to CO₂ if not stressed

swamp: 4 of 92 species responded to CO₂ Gratiola neglecta, Gamochaeta, Saururus, Typha

water regime * latitude interaction important!

Middleton & McKee 2012

water regime x latitude interactions

Swamp: Seed/seedlings more variable northward if experiment temperature warmer than spring normal.

Middleton & McKee 2012

Distribution range shifts in novel environments

northern – lower production southward

southern

- higher production northward

Typha glauca

Invasive Species?

We know that novel environments will be..... -extreme

-higher in temp, flood/drought, CO₂, salinity

Environments will interact!

Novel ecosystems: Gleasonian species

Thanks: USGS, National Science Foundation DEB1049838 RAPID, ESA Seeds, Japanese/Korean/Turkish/Czech/Chinese Academies of Science

Mean vs. Extremes

hot/cold extremes; > mean

more variable; <mean

from IPCC 2012

